Making Exploring Robot with Edison

Intel Edison으로 만들어 보는 화성 탐사선

Agenda

- Intel Edison Introduction
- Arduino IDE
- Block Diagram of Pass Finder
- Making PWM and GPIO
- Connect WiFi and Broad casting Webpage
- USB Webcam Broadcasting
- Read Sensor from I2C
- Read Analog value from ADC

Intel Edison Introduction

Intel Edison Introduction

Intel® Edison Breakout Board Kit

Edison and PC Connection

Edison and PC Connection - Basic Setup

q


```
void setup() {
    // initialize digital pin 13 as an output.
    pinMode(13, OUTPUT);
```

}

```
// the loop function runs over and over again forever
void loop() {
    digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
    delay(1000); // wait for a second
    digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
    delay(1000); // wait for a second
```

💩 sketch_sep03c 0	ŀ두이노 1.6.5		
파일 편집 스케치 도 새 파일 열기… Open Recent 스케치북	구 도움말 Ctrl+N Ctrl+O		
예제	•	Δ	
닫기 저장 다른 이름으로 저장… 페이지 설정	Ctrl+W Ctrl+S Ctrl+Shift+S Ctrl+Shift+P	01,Basics 02,Digital 03,Analog 04,Communication 05,Control	AnalogReadSerial BareMinimum Blink DigitalReadSerial Fade
인쇄	Ctrl+P	06, Sensors	ReadAnalogVoltage
환경설정	Ctrl+Comma	07,Display	
종료	Ctrl+Q	09,USB	
		10, StarterKit ArduinoISP	-
		Dallas Temperature	
		Bridge Esplora Firmata GSM V	

Pass Finder functions

- 2 Individual motor control with PWM and GPIO
- USB camera Streaming
- WiFi Connection
- Broadcasting Webpage
- Main battery monitoring with ADC
- Position reading from I2C Sensor
- Simple Serial LCD Control

Pass Finder Block Diagram

2 Individual motor control with PWM and GPIO

#define DIRA 12 // Motor A Direction #define DIRB 13 // Motor B Direction

#define PWMA 3 // Motor A PWM
#define PWMB 11 // Motor B PWM

#define BREAKA 9 // Motor A Break#define BREAKB 8 // Motor B Break

HIGH: Break LOW: Run HIGH: Break LOW: Run

void setup()

```
{
```

pinMode (DIRA, OUTPUT); pinMode (DIRB, OUTPUT); pinMode (BREAKA, OUTPUT); pinMode (BREAKB, OUTPUT);

2 Individual motor control with PWM and GPIO

void loop() {

```
digitalWrite(BREAKA, LOW); digitalWrite(BREAKB, LOW); // Motor RUN
digitalWrite(DIRA, HIGH); analogWrite(PWMA, 200);
digitalWrite(DIRB, HIGH); analogWrite(PWMB, 200);
delay(800);
digitalWrite(BREAKA, HIGH); digitalWrite(BREAKB, HIGH); // Motor STOP
delay(400);
```

```
digitalWrite(BREAKA, LOW); digitalWrite(BREAKB, LOW); // Motor RUN
digitalWrite(DIRA, LOW); analogWrite(PWMA, 200);
digitalWrite(DIRB, LOW); analogWrite(PWMB, 200);
delay(800);
digitalWrite(BREAKA, HIGH); digitalWrite(BREAKB, HIGH); // Motor DTOP
delay(400);
```


USB camera Streaming

(intel) 17

USB camera Streaming

- Edit base-feeds.conf
 - Vi /etc/opkg/base-feeds.conf
 - Press 'i' to edit
 - Enter
 - src/gz all http://repo.opkg.net/edison/repo/all
 - src/gz edison http://repo.opkg.net/edison/repo/edison
 - src/gz core2-32 <u>http://repo.opkg.net/edison/repo/core2-32</u>
 - Press 'esc' key
 - Press ':'
 - Press 'wq' and 'enter'
- Update and install
 - Opkg update
 - Opkg install git
 - git clone https://github.com/drejkim/edi-cam.git
- Check and install optional
 - find /lib/modules/* -name 'uvc' → "/lib/modules/3.10.17-poky-edison+/kernel/drivers/media/usb/uvc"
 - No UVC module, install module with this command : opkg install kernel-module-uvcvideo

USB camera Streaming

- Check USB CAM attached to Edison
 - Is -I /dev/video0 → crw-rw---- 1 root video 81, 0 Dec 20 21:23 /dev/video0
- Install
 - Cd /etc/opkg/edi-cam/bin
 - ./install_ffmpeg.sh
 - cd /edi-cam/web/server
 - npm install
- Edit web page
 - vi /etc/opkg/edi-cam/web/client/index.htm
 - var wsUrl = 'ws://myedison.local:8084/'; → edit myedison to your Edison device name
- Run Server
 - Node /etc/opkg/edi-cam/web/server/server.js
- Connect web server
 - Your web server page is http://myedison.local:8080 or http://192.168.0.xx.local:8080 → Edison's IP address

WiFi Connection

- Connect WiFi from Arduino
 - Use basic Example from Arduino IDE "WiFiWebServer"
 - ochar ssid[] = "yourNetwork"; // your network SSID (name)
 - o char pass[] = "secretPassword"; // your network password
 - int keyIndex = 0; // your network key Index number (needed only for WEP)
 - int status = WL_IDLE_STATUS;
 - WiFiServer server(80); → Fix to port 8080 to avoid conflict
 - How to disable Edison's default web page → local address:80
 - vi /usr/lib/edison_config_tools/edison-config-server.js
 - Make skip this line "//http.createServer(requestHandler).listen(80);"

Broadcasting Webpage

// the content of the HTTP response follows the header:

client.print("Click here turn the LED on pin 9 on
"); client.print("Click here turn the LED on pin 9 off
"); // The HTTP response ends with another blank line: client.println();

// break out of the while loop:

break;

```
}
```

else { // if you got a newline, then clear currentLine: currentLine = "";}

```
}
```

// Check to see if the client request was "GET /H" or "GET /L":
if (currentLine.endsWith("GET /H")) {
 digitalWrite(9, HIGH); // GET /H turns the LED on

► 192.168.0.33:8080 ×	-			-	Lee -	
 ← → C 192.168.0.33:8080 Forward	/ D	192.168.	0.33:8080	×		
Forward	+	⇒ C	<u>192.</u>	168,0,3	3:8080	53
Left StopRight Backward Keep Backward Motor Status: 0 UP Left CenterRight DOWN TILT H Position: 80 TILT V Position: 90 Motor Speed: 500 LOWDEFHIGH Motor Distance: 50 LOWDEFHIGH		Forwa	rd <u>k</u>	Keep Fo	<u>rward</u>	
Backward	Left.	<u></u> <u>Sto</u>	pRigl	<u>nt</u>		
Left CenterRight DOWN TILT H Position: 80 TILT V Position: 90 Motor Speed: 500 LOWDEFHIGH Motor Distance: 50	Mote	<u>Backw</u> or Stat	<u>ard </u> us: 0	Keep <mark>B</mark> a	ickward	
Left CenterRight DOWN TILT H Position: 80 TILT V Position: 90 Motor Speed: 500 LOWDEFHIGH Motor Distance: 50	<u></u>	UI	P			
Motor Distance: 50	Left.	<u> Cer</u>	<mark>nterRi</mark>	<u>ght</u>		
Motor Speed: 500 LOW DEF HIGH Motor Distance: 50	TILT	H Posi	VN tion: 80	6		
Motor Speed: 500 LOW DEF HIGH Motor Distance: 50		V FOSI				
Motor Distance: 50	Moto	or Spee)W	e <mark>d: 500</mark> DEF	HIGH	<u></u>	
	Moto	or <mark>Di</mark> sta	ance: 50	нсч		
	GPS	data: ()			
GPS data: 0						

Main battery monitoring with ADC

```
// with Voltage Divider (2x 10K resistor)
void setup()
void loop()
 printVolts();
void printVolts()
 int sensorValue = analogRead(A0); //read the A0 pin value
 float voltage = sensorValue * (5.00 / 1023.00) * 2; //convert the value to a true voltage.
 lcd.setCursor(0,0);
 lcd.print("voltage = ");
 lcd.print(voltage); //print the voltage to LCD
 lcd.print(" V");
```


Position reading from I2C Sensor

Simple Serial LCD Control

- Serial type or data type?
 - #include <LiquidCrystal.h>
 - // initialize the library with the numbers of the interface pins
 - LiquidCrystal Icd(12, 11, 5, 4, 3, 2);
 - void setup() {
 - I/ set up the LCD's number of columns and rows:
 - Icd.begin(16, 2);
 - // Print a message to the LCD.
 - Icd.print("hello, world!");
 - }
 - void loop() {
 - // set the cursor to column 0, line 1
 - // (note: line 1 is the second row, since counting begins with 0):
 - Icd.setCursor(0, 1);
 - I/ print the number of seconds since reset:
 - Icd.print(millis()/1000);
 - }

Reference

Intel Edison Download and documentation http://www.intel.co.kr/content/www/kr/ko/do-it-yourself/downloads-and-documentation.html

Intel Edison Project Gallery https://communities.intel.com/community/makers/edison/project_gallery?_ga=1.180645666.484733669.1437738635

SparkFun learn https://learn.sparkfun.com/

Getting Started: https://communities.intel.com/community/makers/edison/getting-started

Software Downloads: https://communities.intel.com/docs/DOC-23242

Forums: <u>https://communities.intel.com/community/makers/edison/forums</u>

Intel Confidential — Do Not Forward

Recovering Edison – Console

If Password Is Unknown

- Copy all of the latest images to Edison volume in computer.
- Open PuTTY.
- Reboot Edison leaving the serial connection opened, once you start to see the boot up message hit any key to stop autoboot.

****** PSH loader ****** PCM page cache size = 192 KB Cache Constraint = 0 Pages Arming IPC driver .. Adding page store pool .. PagestoreAddr(IMR Start Address) = 0x04899000 pageStoreSize(IMR Size) = 0x00080000

*** Ready to receive application ***

microkernel built 23:15:13 Apr 24 2014

U-Boot 2014.04 (Sep 08 2014 - 14:09:10)

Watchdog enabled DRAM: 980.6 MiB MMC: tangier_sdhci: 0 In: serial Out: serial Err: serial Hit any key to stop autoboot: 0 Type in "do run_ota"

Hit any key to stop autoboot: (boot > run do ota

After finishing upgrading, you need to set up Wi-Fi configuration again.

Shield	GPIO	PWM	Muxed functions	Notos	
Pin	Linux Pin	Linux Pin		INDLES	
IO0	130		UART1_RXD		
IO1	131		UART1_TXD		
IO2	128		UART1_CTS*		
IO3	12	0	PWM0	Depends on PWM Swizzler**	
IO4	129		UART1_RTS*		
IO5	13	1	PWM1	Depends on PWM Swizzler**	
IO6	182	2	PWM2	Depends on PWM Swizzler**	
107	48		-		
IO8	49		-		
109	183	3	PWM3	Depends on PWM Swizzler**	
			SPI_2_SS1		
IO10	41	Swiz	I2S_2_FS*		
			PWM4_OUT	Depends on PWM Swizzler**	

	43	Swiz	SPI_2_TXD	
1011			I2S_2_TXD*	
			PWM5_OUT	Depends on PWM Swizzler**
1012	40		SPI_2_RXD	
1012	42		I2S_2_RXD*	
1013	40		SPI_2_CLK	
1013	40		I2S_2_CLK*	
IO14	44		AINO	
IO15	45		AIN1	
IO16	46		AIN2	
IO17	47		AIN3	
IO18	14		AIN4	
			I2C_6_SDA	
IO19	165		AIN5	

	Linux GPIO Pin	GPIO Pin Mux			SoC Pin Modes		Output Enable * (high = output)	Pull-up Enable**
		Linux Pin	0 (low)	1 (high)	0	1	Linux	Linux
100	130				GPIO	UART	248	216
IO1	131				GPIO	UART	249	217
102	128				GPIO	UART	250	218
IO3	12				GPIO	PWM	251	219
104	129				GPIO	UART	252	220
105	13				GPIO	PWM	253	221
106	182				GPIO	PWM	254	222
107	48				GPIO		255	223
108	49				GPIO		256	224
109	183				GPIO	PWM	257	225
IO10	41	263	PWM	see 240				
		240	GPIO or I2S	GPIO or SPI_FS	GPIO	I2S or SPI	258	226

IO11 43		262	PWM	see 241	GPIO	I2S or SPI		
	43	241	GPIO or I2S	GPIO or SPI TXD			259	227
IO12	42	242	GPIO or I2S	GPIO or SPI RXD	GPIO	I2S or SPI	260	228
IO13	40	243	GPIO or I2S	GPIO or SPI CLK	GPIO	I2S or SPI	261	229
IO14 (A0)	44	200	GPIO	A0	GPIO		232	208
IO15 (A1)	45	201	GPIO	A1	GPIO		233	209
IO16 (A2)	46	202	GPIO	A2	GPIO		234	210
IO17 (A3)	47	203	GPIO	A3	GPIO		235	211
IO18 (A4)	14	204	GPIO or I2C SDA	A4	GPIO	I2C-6	236	212
IO19 (A5)	165	205	GPIO or I2C SCL	A5	GPIO	I2C-6	237	213

GPIO allocation and shield pin control

- Identify the Arduino shield pin number of the pin you wish to use, in the range IO0 IO19.
- Identify the functions available for the given pin, and select the function you wish to use.
 - ✓ Typical functions are GPIO, PWM, UART, I2C, SPI, ADC.
 - ✓ Only some functions are available on each pin.
- Determine which GPIO signals, if any, need to be configured to select the correct pin muxing option for the selected function. Some pins only have a single function, or do not require mux control.
- Determine which GPIO signals, if any, need to be configured to select the buffer direction for input or output, and determine the direction that is required.
- Determine which GPIO signals, if any, need to be configured to select the pull-up resistor control, and whether the pull-up resistor should be enabled or disabled. Generally, for most pin functions, the pull-up resistors should typically be disabled. For GPIO input functions, the pull-up resistor may optionally be enabled or disabled according to the needs of the user.
- Export the above GPIO numbers for access in the Linux user-space environment (i.e. from the command shell).
- Configure the above GPIO numbers for output.
- Assert the TRI_STATE_ALL signal to disconnect the shield pins.
- Set the above GPIO numbers to assert their output logic levels as high or low.
- Set the SoC GPIO pin mode for the required functionality.
- De-assert the TRI_STATE_ALL signal to reconnect the shield pins

Configuring IO6 as a PWM output

- The shield number is IO6 and the GPIO number is 182.
- The function required is PWM. Other function on the pins is GPIO.
- SoC pin mode must be set to 'mode1' to select PWM.
- GPIO254 must be set to 1 to enable the output direction for IO6.
- GPIO222 must be set as a high-impedance input to disable the external pull-up resistor for IO6.
- The TRI_STATE_ALL signal is controlled by GPIO 214.
 - ✓ edison# echo 254 > /sys/class/gpio/export
 - ✓ edison# echo 222 > /sys/class/gpio/export
 - ✓ edison# echo 214 > /sys/class/gpio/export
 - ✓ edison# echo low > /sys/class/gpio/gpio214/direction
 - ✓ edison# echo high > /sys/class/gpio/gpio254/direction
 - ✓ edison# echo in > /sys/class/gpio/gpio222/direction
 - edison# echo mode1 > /sys/kernel/debug/gpio_debug/gpio182/current_pinmux
 - ✓ edicon# echo high > /sys/class/gpio/gpio214/direction

Configuring IO6 as a PWM output

- Now, it should be possible to use IO6 as a PWM output. For example:
 - ✓ edison# echo 2 > /sys/class/pwm/pwmchip0/export
 - edison# echo 2000000 > /sys/class/pwm/pwmchip0/pwm2/duty_cycle
 - ✓ edison# echo 1 > /sys/class/pwm/pwmchip0/pwm2/enable

